Anti-VSV-M [23H12] Antibody

This monoclonal antibody reacts with VSV-M protein.


- Reacts with VSV-M protein

- Suitable for Western Blot applications

Vesicular stomatitis virus (VSV) is a well studied, enveloped, negative-strand RNA virus. The VSV genome encodes for 5 proteins: N, P, M, G, and L. The G protein (glycoprotein) is located at the virion surface and is responsible for virus attachment and penetration. Additionally, many lentivrial vectors are pseudotyped with VSV-G from the Indiana serotype.

Vesicular stomatitis virus (VSV) is a well studied, enveloped, negative-strand RNA virus. The VSV genome encodes for 5 proteins: N, P, M, G, and L. The M protein (or matrix protein) is responsible for binding the nucleocapsid and condenses it into a tightly coiled helix and binds the nucleocapsid to the envelope. This activity of the M protein is what gives the virus its bullet like shape. In addition to M protein's role in virus assembly, it is also responsible for mediating molecular mechanisms of VSV pathogenesis. Wild-type M protein surpresses host gene expression in infected cells and inhibits antiviral responses.

货号 品名 规格 库存 价格
Anti-VSV-M [23H12] Antibody
100ug 现询
Regular Price:6560元
On Sale:

Product Type:Antibody
Name:Anti-VSV-M [23H12]
Accession ID:P03519
Isotype:IgG2a kappa
Clone Name:23H12
Specificity:VSV-Ind matrix (M) protein
Immunogen:VSV infection
Purification Method:Protein G purified
Buffer:PBS, 0.05% (w/v) Sodium Azide
Tested Applications:Western blot (1:1000)
Storage:-20C (avoid repeated freeze / thaw cycles)
Shipped:Cold packs


产品说明书:auto_1317.jpgAnti-VSV-M [23H12] Antibody


From the laboratory of Douglas S. Lyles, PhD, Wake Forest School of Medicine.

  1. Lyles DS, Puddington L, McCreedy BJ Jr. Vesicular stomatitis virus M protein in the nuclei of infected cells. J Virol. 1988 Nov;62(11):4387-92. PubMed PMID: 2845149

  2. Lefrancios L, Lyles DS. The interaction of antibody with the major surface glycoprotein of vesicular stomatitis virus. I. Analysis of neutralizing epitopes with monoclonal antibodies. Virology 121: 157-167, 1982.

  3. Marcos-Villar L, Pérez-Girón JV, Vilas JM, Soto A, de la Cruz-Hererra CF, Lang V, Collado M, Vidal A, Rodríguez MS, Muñoz-Fontela C, Rivas C. SUMOylation of p53 mediates interferon activities. Cell Cycle. 2013 Sep 1;12(17):2809-16. View Article

  4. de la Cruz-Herrera CF, Campagna M, García MA, Marcos-Villar L, Lang V, Baz-Martínez M, Gutiérrez S, Vidal A, Rodríguez MS, Esteban M, Rivas C. Activation of the double-stranded RNA-dependent protein kinase PKR by small ubiquitin-like modifier (SUMO). J Biol Chem. 2014 Sep 19;289(38):26357-67. View Article

  5. Hoffmann M, Krüger N, Zmora P, Wrensch F, Herrler G, Pöhlmann S. The Hemagglutinin of Bat-Associated Influenza Viruses Is Activated by TMPRSS2 for pH-Dependent Entry into Bat but Not Human Cells. PLoS One. 2016 Mar 30;11(3):e0152134.

  6. Salata C, Baritussio A, Munegato D, Calistri A, Ha HR, Bigler L, Fabris F,Parolin C, Palù G, Mirazimi A. Amiodarone and metabolite MDEA inhibit Ebola virusinfection by interfering with the viral entry process. Pathog Dis. 2015Jul;73(5). pii: ftv032. View Article

  7. Plegge T, Hofmann-Winkler H, Spiegel M, Pöhlmann S. Evidence that Processing of the Severe Fever with Thrombocytopenia Syndrome Virus Gn/Gc Polyprotein Is Critical for Viral Infectivity and Requires an Internal Gc Signal Peptide. PLoS One. 2016 Nov 17;11(11):e0166013. View Article

  8. Baz-Martínez M, Da Silva-Álvarez S, Rodríguez E, Guerra J, El Motiam A, Vidal A, García-Caballero T, González-Barcia M, Sánchez L, Muñoz-Fontela C, Collado M, Rivas C. Cell senescence is an antiviral defense mechanism. Sci Rep. 2016 Nov 16;6:37007. View Article

  9. Wrensch F, Hoffmann M, Gärtner S, Nehlmeier I, Winkler M, Pöhlmann S. Virion background and efficiency of virion incorporation determine susceptibility of SIV-Env-driven viral entry to inhibition by IFITM proteins. J Virol. 2016 Nov 2. pii: JVI.01488-16. View Article

  10. Hsu HL, Millet JK, Costello DA, Whittaker GR, Daniel S. Viral fusion efficacy of specific H3N2 influenza virus reassortant combinations at single-particle level. Sci Rep. 2016 Oct 18;6:35537. View Article

  11. Pirooz SD, He S, Zhang T, Zhang X, Zhao Z, Oh S, O'Connell D, Khalilzadeh P, Amini-Bavil-Olyaee S, Farzan M, Liang C. UVRAG is required for virus entry through combinatorial interaction with the class C-Vps complex and SNAREs. Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2716-21. View Article

  12. Salata C, Baritussio A, Munegato D, Calistri A, Ha HR, Bigler L, Fabris F, Parolin C, Palù G, Mirazimi A. Amiodarone and metabolite MDEA inhibit Ebola virus infection by interfering with the viral entry process. Pathog Dis. 2015 Jul;73(5). View Article

  13. González-Santamaría J, Campagna M, Ortega-Molina A, Marcos-Villar L, de la Cruz-Herrera CF, González D, Gallego P, Lopitz-Otsoa F, Esteban M, Rodríguez MS, Serrano M, Rivas C. Regulation of the tumor suppressor PTEN by SUMO. Cell Death Dis. 2012 Sep 27;3:e393. doi: 10.1038/cddis.2012.135. PubMed PMID: 23013792; PubMed Central PMCID: PMC3461367. View Article

  14. Ueda MT, Kurosaki Y, Izumi T, Nakano Y, Oloniniyi OK, Yasuda J, Koyanagi Y, Sato K, Nakagawa S. Functional mutations in spike glycoprotein of Zaire ebolavirus associated with an increase in infection efficiency. Genes Cells. 2017 Feb;22(2):148-159. doi: 10.1111/gtc.12463. PubMed PMID: 28084671. View Article

  15. Hoffmann M, Crone L, Dietzel E, Paijo J, González-Hernández M, Nehlmeier I, Kalinke U, Becker S, Pöhlmann S. A polymorphism within the internal fusion loop of the Ebola virus glycoprotein modulates host cell entry. J Virol. 2017 Feb 22. pii: JVI.00177-17. doi: 10.1128/JVI.00177-17. [Epub ahead of print] PubMed PMID: 28228590. View Article

  16. Hofmann H, Li X, Zhang X, Liu W, Kühl A, Kaup F, Soldan SS, González-Scarano F, Weber F, He Y, Pöhlmann S. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol. 2013 Apr;87(8):4384-94. doi: 10.1128/JVI.02628-12. Epub 2013 Feb 6. PubMed PMID: 23388721; PubMed Central PMCID: PMC3624395. View Article

  17. de la Cruz-Herrera CF, Baz-Martínez M, Motiam AE, Vidal S, Collado M, Vidal A, Rodríguez MS, Esteban M, Rivas C. Phosphorylable tyrosine residue 162 in the double-stranded RNA-dependent kinase PKR modulates its interaction with SUMO. Sci Rep. 2017 Oct 25;7(1):14055. View Article

  18. Brinkmann C, Hoffmann M, Lübke A, Nehlmeier I, Krämer-Kühl A, Winkler M, Pöhlmann S. The glycoprotein of vesicular stomatitis virus promotes release of virus-like particles from tetherin-positive cells. PLoS One. 2017 Dec 7;12(12):e0189073. View Article

  19. Acciani M, Alston JT, Zhao G, Reynolds H, Ali AM, Xu B, Brindley MA. Mutational Analysis of Lassa Virus Glycoprotein Highlights Regions Required for Alpha-Dystroglycan Utilization. J Virol. 2017 Aug 24;91(18). pii: e00574-17. View Article

  20. Kurosaki Y, Ueda MT, Nakano Y, Yasuda J, Koyanagi Y, Sato K, Nakagawa S. Different effects of two mutations on the infectivity of Ebola virus glycoprotein in nine mammalian species. J Gen Virol. 2018 Feb;99(2):181-186. View Article

  21. Emanuel J, Callison J, Dowd KA, Pierson TC, Feldmann H, Marzi A. A VSV-based Zika virus vaccine protects mice from lethal challenge. Sci Rep. 2018 Jul 23;8(1):11043. View Article

  22. Kleine-Weber H, Elzayat MT, Hoffmann M, Pöhlmann S. Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein. Sci Rep. 2018 Nov 9;8(1):16597. View Article

  23. Locher S, Schweneker M, Hausmann J, Zimmer G. Immunogenicity of propagation-restricted vesicular stomatitis virus encoding Ebola virus glycoprotein in guinea pigs. J Gen Virol. 2018 Jul;99(7):866-879. doi: 10.1099/jgv.0.001085. Epub 2018 Jun 5. View Article

  24. González-Hernández M, Hoffmann M, Brinkmann C, Nehls J, Winkler M, Schindler M, Pöhlmann S. A GXXXA Motif in the Transmembrane Domain of the Ebola Virus Glycoprotein Is Required for Tetherin Antagonism. J Virol. 2018 Jun 13;92(13). pii: e00403-18. View Article

  25. Abdullahi S, Jäkel M, Behrend SJ, Steiger K, Topping G, Krabbe T, Colombo A, Sandig V, Schiergens TS, Thasler WE, Werner J, Lichtenthaler SF, Schmid RM, Ebert O, Altomonte J. A Novel Chimeric Oncolytic Virus Vector for Improved Safety and Efficacy as a Platform for the Treatment of Hepatocellular Carcinoma. J Virol. 2018 Nov 12;92(23). pii: e01386-18. View Article

  26. Orzalli MH, Smith A, Jurado KA, Iwasaki A, Garlick JA, Kagan JC. An Antiviral Branch of the IL-1 Signaling Pathway Restricts Immune-Evasive Virus Replication. Mol Cell. 2018 Sep 6;71(5):825-840.e6. doi: 10.1016/j.molcel.2018.07.009. Epub 2018 Aug 9. View Article

  27. Kleine-Weber H, Elzayat MT, Wang L, Graham BS, Müller MA, Drosten C, Pöhlmann S, Hoffmann M. Mutations in the Spike Protein of Middle East Respiratory Syndrome Coronavirus Transmitted in Korea Increase Resistance to Antibody-Mediated Neutralization. J Virol. 2019 Jan 4;93(2). View Article

  28. Hoffmann M, Kaufmann SV, Fischer C, Maurer W, Moldenhauer AS, Pöhlmann S. Analysis of Resistance of Ebola Virus Glycoprotein-Driven Entry Against MDL28170, An Inhibitor of Cysteine Cathepsins. Pathogens. 2019;8(4):192. Published 2019 Oct 15. View article

  29. Kleine-Weber H, Pöhlmann S, Hoffmann M. Spike proteins of novel MERS-coronavirus isolates from North- and West-African dromedary camels mediate robust viral entry into human target cells. Virology. 2019;535:261-265. View article

  30. Furuyama W, Reynolds P, Haddock E, et al. A single dose of a vesicular stomatitis virus-based influenza vaccine confers rapid protection against H5 viruses from different clades. NPJ Vaccines. 2020;5:4. Published 2020 Jan 10. View article

  31. Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 2020;5(4):562-569. View article

  32. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-280.e8. View article 

  33. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78(4):779-784.e5. View article

  34. Wells HL, Letko M, Lasso G, et al. The evolutionary history of ACE2 usage within the coronavirus subgenus Sarbecovirus. Preprint. bioRxiv. 2020;2020.07.07.190546. Published 2020 Jul 7.  View article

  35. Liberatore RA, Mastrocola EJ, Cassella E, Schmidt F, Willen JR, Voronin D, Zang TM, Hatziioannou T, Bieniasz PD. Rhabdo-immunodeficiency virus, a murine model of acute HIV-1 infection. Elife. 2019 Oct 23;8:e49875. View article

  36. Korzyukov Y, Iheozor-Ejiofor R, Levanov L, Smura T, Hetzel U, Szirovicza L, de la Torre JC, Martinez-Sobrido L, Kipar A, Vapalahti O, Hepojoki J. Differences in Tissue and Species Tropism of Reptarenavirus Species Studied by Vesicular Stomatitis Virus Pseudotypes. Viruses. 2020 Apr 2;12(4):395. View article

  37. Pryce R, Azarm K, Rissanen I, Harlos K, Bowden TA, Lee B. A key region of molecular specificity orchestrates unique ephrin-B1 utilization by Cedar virus. Life Sci Alliance. 2019 Dec 20;3(1):e201900578. View article

  38. Oguntuyo KY, Stevens CS, Hung CT, Ikegame S, Acklin JA, Kowdle SS, Carmichael JC, Chiu HP, Azarm KD, Haas GD, Amanat F, Klingler J, Baine I, Arinsburg S, Bandres JC, Siddiquey MN, Schilke RM, Woolard MD, Zhang H, Duty AJ, Kraus TA, Moran TM, Tortorella D, Lim JK, Gamarnik AV, Hioe CE, Zolla-Pazner S, Ivanov SS, Kamil JP, Krammer F, Lee B. Quantifying absolute neutralization titers against SARS-CoV-2 by a standardized virus neutralization assay allows for cross-cohort comparisons of COVID-19 sera. medRxiv [Preprint]. 2020 Aug 15:2020.08.13.20157222. View Article

  39. Condor Capcha JM, Lambert G, Dykxhoorn DM, Salerno AG, Hare JM, Whitt MA, Pahwa S, Jayaweera DT, Shehadeh LA. Generation of SARS-CoV-2 Spike Pseudotyped Virus for Viral Entry and Neutralization Assays: A 1-Week Protocol. Front Cardiovasc Med. 2021 Jan 15;7:618651.  View article 

  40. Furuyama W, Shifflett K, Pinski AN, Griffin AJ, Feldmann F, Okumura A, Gourdine T, Jankeel A, Lovaglio J, Hanley PW, Thomas T, Clancy CS, Messaoudi I, O'Donnell KL, Marzi A. Rapid protection from COVID-19 in nonhuman primates vaccinated intramuscularly but not intranasally with a single dose of a recombinant vaccine. bioRxiv [Preprint]. 2021 Jan 19:2021.01.19.426885. View article 

  41. Li W, Chen C, Drelich A, Martinez DR, Gralinski LE, Sun Z, Schäfer A, Kulkarni SS, Liu X, Leist SR, Zhelev DV, Zhang L, Kim YJ, Peterson EC, Conard A, Mellors JW, Tseng CK, Falzarano D, Baric RS, Dimitrov DS. Rapid identification of a human antibody with high prophylactic and therapeutic efficacy in three animal models of SARS-CoV-2 infection. Proc Natl Acad Sci U S A. 2020 Nov 24;117(47):29832-29838. View article 

  42. Hoffmann M, Zhang L, Krüger N, Graichen L, Kleine-Weber H, Hofmann-Winkler H, Kempf A, Nessler S, Riggert J, Winkler MS, Schulz S, Jäck HM, Pöhlmann S. SARS-CoV-2 mutations acquired in mink reduce antibody-mediated neutralization. Cell Rep. 2021 Apr 20;35(3):109017.  View article